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A BST RACT 

The terminal diolefins, bis(buteny1)carborane and bis(hexenyl)carborane, were prepared 

and converted to the corresponding diepoxide monomers, bis(epoxybuty1)carborane and 

bis(epoxyhexy1)carborane. Polymerization was demonstrated with several different 

catalytic reagents. Both epoxy derivatives were easily cured to  hard solids at 175OC 

in  the presence of boron trifluoride monoethylamine. Evaluation of the cured systems 

for adhesive applications was initiated based on this catalyst 

were assembled from type 17-7 stainless steel strips. Bond strength values increased 

markedly during the program as curing conditions were optimized and lay-up conditions 

were improved. Room temperature bond-strengths up to 2810 p.s.i. were achieved with 

the bis(epoxyhexy1)carborane system. The corresponding epoxybutyl system gave values 

up to  1840 p.s.i. 

of  15 - 25% in the room temperature bond strengths. Failure was cohesive in  a l l  instances 

where glass cloth was used as a binder in the joint area. The results are sufficiently 

encouraging to suggest that further work wi l l  lead to a practical high temperature adhesive 

system. 

Lapshear test specimens 

Post cure at 25OoC for one hour i n  the former resulted i n  a decrease 
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1 .  INTRODUCTION 

The object of this program was the synthesis of adhesives that are stable above 6OO0F, 

and as high as 1000°F for aerospace applications. To achieve this objective, we 

undertook to prepare and study certain epoxy adhesives containing carborane units 

i n  the polymer structure. 

Aside from the problem of thermal stability, conventional epoxies offer an unlimited 

scope of modification and application possibilities. However, the best epoxy systems, 

such as those derived from bis-phenol A, are not serviceable above 350 F. Modified 

epoxy phenolics are very versatile adhesives and are serviceable to 350 F continuously. 

They retain satisfactory strength for short exposures up to 500 F. Our approach to the 

design of a high temperature adhesive was to incorporate a group into the simple 

epoxide system which serves to increase thermal stability without detracting from the 

favorable characteristics of epoxies, particularly their ready cure without by-product 

evolution. Since the carborane polyhedron appears to impart excel lent thermal and 

physical properties to certain polymer structures i n  which i t  i s  incorporated, it seemed 

appropriate to  construct a polymer system which combined a carborane moiety with an 

epoxy function. 

0 

0 

0 

The carboranes, first reported in 1963, are noted for their inherent thermal and chemical 

stability, their non-polar character and their high solubility i n  organic solvents. In the 

series 

are hydrogens attached to the adjacent carbon atoms. The fundamental C B H structure 

i s  nearly icosahedral and can be represented by the following flat projection. 

R R'C2B10H10, carborane i s  the trivial name given to the compound where R and R '  

2 10 10 

1 
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The electronic distribution i n  the polyhedron i s  highly delocalized over the entire 

structure. A strong electron-withdrawing character, attributed to the polyhedron, 

affects the chemistry of various groups bonded to the icosahedral carbon atoms. The 

polyhedron i s  remarkedly stable to oxidizing and reducing agents. This permits 

selective oxidation and reduction reactions to  be performed on the organic substituents. (1 1 

The thermal stability of casboranes i s  remarkable when compared to  that of other 

boron-hydrogen containing materials. A slow isomerization occurs when carborane 

i s  heated at 465 - 500°C in an inert forming meta carborane. Para 

carborane i s  formed at 630 C . 0 (3) 

Several research teams have concentrated recently on the synthesis of high temperature 

stable polymers by the incorporation of carborane and metacarborane units into polymer 

structures with other groups (4 - ’). The increased thermal stability of these polymers 

over conventional systems i s  due i n  part to  the electron defiency of the carborane 

group and i t s  influence on the thermal stability of adjacent chemical bonds. The 

bulky, three-dimensional ring system also induces a degree of internal plasticization 

i n  the polymer, presumably because i t  prevents close-packing of the polymer chains. 

(2) A few monofuncf i~m! epaxya!ky!carboranes hcrve previous!y heen described 

including epoxy propylcarborane and epoxybutylcarborane. The ease of ring-opening 

i s  apparently dependent on the proximitry of the electron withdrawing carborane cage 

to the epoxy linkage. For example, the isopropyl derivative# 

CH 
1 3  

2 
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i s  stable to  attack by acids whereas, under identical conditions, the epoxy linkage 

i n  the butyl derivative 

i s  readily cleaved. 

In order to investigate the potential usefulness of carboranes as high temperature 

adhesives, this program has been designed to synthesize epoxyal kylcarborane 

monomers of the following type 

where n = 2, 4 

and to  investigate their adhesive qualities in  the presence of several conventional 

cafolytic curing agents. Progress on the program i s  presented under the following 

headings. 

1. Synthesis of Carborane Intermediates 

2. Synthesis of Epoxycarborane Monomers 

3. Curing and Polymerization Studies 

4. Adhesive Bond Property Evaluation 

3 



II. DISCUSSION 

A. SYNTHESIS OF CARBORANE INTERMEDIATES 

The synthesis of several epoxyalkylcarborane monomers required the init ial  preparation 

of the corresponding alkenyl and dialkenyl carboranes. Although the particular dialkenyl 

carboranes of interest have not been described before, methods for the synthesis of 

substituted carboranes had been well established by previous workers i n  the field. The 

compounds were prepared i n  a stepwise fashion starting from decaborane. First carborane 

was synthesized i n  four steps according to  a published reaction sequence (2 , .-) The 

pertinent reaction sequences, and the amounts of materials prepared, are summarized 

below. 

1. 6,9-Bis(acetonitrilo)decaborane (BAND) 

A total of 2500 grams of BAND was prepared from 2100 grams of 

decaborane i n  six batches. The following equation describes the 

synthetic route. 

The overall conversion of decaborane to BAND was 77 percent. 

2. 1, 2-Bis(acetoxymethy1)carborane (BAMC) 

A total of 1195 grams of BAMC was prepared i n  eleven batches, 

according to the following reaction scheme 

4 



C H3C02CH2C-CCH202CC H3+(C H3 C N)2B, 2-3 Be nze ne 

CH3CO2CH2YCH2O2CCH3 + H2 

loH 10 

The overall conversion of BAND to product was 45 percent. 

3. 1,2-Bis(hydroxymethyI)carborane (BHMC) 

A total of 495 grams of BHMC was prepared i n  three batches 

using an acid-catal yzed methanol transesteri fication reaction: 

C H p H  

The overall conversion of BAMC to product was 42 percent. 

4. Carborane 

Carborane was prepared by the oxidation of l12-bis(hydroxymethyl)- 

carborane with alkaline potassium permanganate. 

5 
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A total of 183 grams of carborane was prepared in 15 batches. 

The overall conversion of BHMC to desired product was 60 

percent. 

5 .  1,2-Bis(3-butenyl)carborane 

The d i bute n y I car bora ne, previous I y unreported, was prepared 

by the following reaction sequence. 

2C4HgLi+HC-CH -> LiC-CLi + 2C4H10 \o/ \O? 
B I O H I O  90H10 

H2)2C H=C H2+ C H2'C H (C 9 H2+2Li Br 

The infrared spectrum of the compound i s  shown in Figure 1. A 

total of 78 grams of crude material was obtained i n  4 batches. 

6 .  1,2-Bis(5-hexenyl)carborane 
~~ ~ ~~ 

Dihexenyicarborane vias prepred 

reaction of dilithiocarborane with 6 -bromo-1 -hexene. The 

infrared spectrum of the product i s  shown i n  Figure II. A total 

of 117.2 grams of material was prepared i n  three batches. 

G sln?I!ar sequence by the 

B. SYNTHESIS OF EPOXYALKYLCARBORANE MONOMERS 
~~ 

AI kenylcarboranes were converted to the corresponding epoxides using 

the well known trifluoroperacetic ac id  reagent. The reaction route i s  

6 
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represented by the following equation: 

CH2CI 
RCH=CH2 + CF3C03H -5 R C H 4 H 2  + CF3C02H 

Na2C02 'd 

In the presence of trifluoroacetic acid, the epoxy ring could open 

to give the hydroxy-trifl uoroacetate derivative. However, epoxy 

ring-opening i s  avoided in this system since sodium carbonate i s  

used as a base and neutralizes free acids . It also destroys excess peracid. 

There was no evidence for the formation of the glycol derivatives i n  this work. 

The following epoxy derivatives were prepared. 

m.p. 60 - 63OC 

c ~ ( c H 2 ) 4 ~ o H l o 2  (CH ) 4 C H - € H 2  \a/ 

Both butyl derivatives are solids whereas the hexyl derivative i s  a 

l iquid at room temperature. To our knowledge, this i s  the first 

preparation of the bis(epoxyalky1)carboranes. 

7 
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C. CURING AND POLYMERIZATION STUDIES 

Several catalytic agents were investigated for the polymerization of the 

epoxyalkylcarborane systems. Catalytic agents were chosen i n  preference 

to reactive hardeners because the latter usually requires a larger amount 

of reagent per given amount of resin. The introduction of any amount of 

a foreign species into the system would also result i n  a decrease i n  the 

inherent thermal stability provided by the carborane nucleus. The catalytic 

type system would introduce the least amount of  reagent and s t i l l  give an 

effective cure. 

Precapio et state that olefin oxides with no ether linkage between the 

epoxide group and the rest of the molecule generally react faster with acidic 

reagents than with basic reagents. Accordingly, the complex boron tr i-  

fluoride-monethylamine was chosen for an investigation of curing character- 

istics prior to the assembly of specimens for lap-shear tests. Lee and Nevi l le (8) 

state that this complex i s  effective i n  amounts as small as one phr (parts per 

100 parts resin) but that optimum properties are obtained when a higher 

percentage (three to five phr) i s  used. A drawback to this catalyst i s  that 

i t  i s  moisture sensitive. 

Most reports on the curing of  epoxy resins with boron trifluoride-monoethyl- 

amine state that the complex undergoes dissociation at elevated temperatures, 

and that curing i s  actually accomplished by the acid species, boron trifluoride. 

However, Harris and Temin ( 9, have recently concluded that during i s  

initiated by reaction of the complex with the epoxy groups rather than by 

decomposition to a reactive group. They found that the complex itself 

slowly decomposed at 190-200°C to products containing the BF ion. Lee 

and Nevi l le report that colored castings have been obtained at curing 
4 

temperatures greater than 105 0 C. (8) 

8 
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We have found that both bis(epoxybuty1)carborane and bis(epoxyhexy1) - 
carborane readily cure at elevated temperatures i n  the presence of boron 

trifluoride monoethylamine. Hard thin discs were formed when mixtures 

containing 3 phr catalyst were heated at 175 C for one hour. These discs 

were tan i n  color and resistant to moderate flexure. A cross-linked poly- 

ether results since two functional groups are present per molecule * 

0 

L 
I 

Both epoxyalkylcarboranes can be conveniently "B-staged" at 100°C to 

give materials which are non-flowing plastics having string-forming 

characteristics at room temperature. The epoxyhexyl system appears to 

react faster than the epoxybutyl system. After a two hour period, an 

init ial  cloudiness vanishes i n  the hexyl system whereas a cloudy suspension 

remains i n  the butyl system. At 100°C, both systems are free-flowing 

liquids and can thus be easily applied to specimens for lap-shear tests. 

The apparent greater ease of reactivity of the hexyl system compared to 

the butyl system toward the curing agent i s  not unexpected. Grafstein 

and co-workers") previously reported that the carborane nucleus inhibited 

acid catalyzed epoxy ring openings on a side chain. For example, a stable 

epoxide was obtained from the reaction of isopropenyl carborane with 

trifluoroperacetic acid whereas with this same reagent, monobutenyl- 

carborane gave a glycol trifluoroacetic adduct, Presumably the epoxy- 

9 
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butyl intermediate i s  further attacked by excess reagent to give the adduct. 

The same reaction, conducted under alkaline conditions to remove the ring- 

opening species, gave the expected mono(epoxybuty1)carborane. 

A preliminary investigation was made of the effect of two basic-type 

curing agents, N, N-dimethylbenz y.1 amine and 2,4, b-tris(dimethy1- 

ami nomethy1)phenol = (DMP-30) on bis(epoxybuty1)carborane. In both cases, 

room temperature brittle solids were obtained. 

Some basic reagents are known to degrade the carborane cage to B species. 

However, studies made with the above basic catalysts and with boron t r i -  

fluoride-monoethylamine on the mono(epoxybuty1) system showed that epoxy 

ring opening, and not degradation, had occurred. With a curing temperature 

of  175 C and a concentration of 3 phr, only a slight increase i n  solution 

viscosity was noted at 175 C but viscous plastics having string-forming 

characteristics formed when the samples were cooled to  room temperature. 

Opening of the epoxy ring was confirmed by an examination of the infrared 

spectra . 
linear structure w i l l  result. 

9 

0 

0 

Since only one reactive epoxy ring i s  present per molecule, a 

Control experiments were run under identical conditions using the mono- 

(epoxybuty1)carborane itself to rule out a spontaneous thermal curing 

mechanism. The behavior of butenylcarborane was also studied i n  the 

10 
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presence of DMP-30 catalyst. There was no visual or infrared 

evidence of reaction or degradation i n  either system. 

It was anticipated that curing a mixture of mono and bis(epoxybuty1)- 

carborane might result i n  a hard polymer. Long chains would be formed 

by linkage of monofunctional species. These chains would then be cross- 

linked into a large network by the difunctional species. Preliminary 

experiments were conducted by heating equal weight mixtures of the two 

species with a catalyst at 180 C. However, a l l  three catalyst systems 

resulted i n  the formation of room temperature britt le solids. 

0 

Based on these results, the adhesive characteristics of bis(epoxybuty1)- 

carborane and bis(epoxyhexy1)carborane were evaluated in the testing 

program described i n  the following section. The catalyst boron trifluoride- 

monoethylamine was chosen as the curing agent since this species gave the 

hardest solids on polymerization. 

D. ADHESIVE BOND PROPERTY EVALUATION 
~~ ~~ 

-.. 
I he adhesive properties of both b~s(=pn.Y.y_hl_ltyl!carborane and bis(epoxy- 

hexy1)carborane cured with boron trifluoride-monoethylamine were 

evaluated by lap-shear tests, Specimens were assembled from type 17/7 

stainless steel strips to  give an overlap area of 0.5 i n  . Al l  testing was 

conducted at room temperature with an lnstron Tensile Machine. A sub- 

stantial improvement was made in lay-up techniques during the course of  

this evaluation. The best results were obtained by the application of 15 

p.s.i. to  the overlap area and the use of a glass cloth binder (VolanA-181) 

to hold the epoxy i n  the joint during cure. Curing time, curing temperature, 

degree of "B-staging" and the effect of post-cure at elevated temperatures 

2 
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were varied i n  this evaluation. Failure was mainly cohesive i n  a l l  systems 

where glass cloth was used as a binder. The data are shown i n  tabular 

form in Tables I and II. Glue l ine thicknesses were diff icult to measure 

precisely, but were about 6 m i l s  for the best samples. 

It i s  worth noting that the highest bond strength value obtained in the bis- 

(epoxyhexy1)carborane system was 28 10 p. s. i . (H EC -74). * 
tained three percent catalyst and had been "B-staged" at 100°C for two hours 

and an additional seven minutes at 125OC. The resulting l iquid was very 

viscous at this temperature and was gummy at 25 C. Glass cloth to be used 

as the binder was impregnated with the resin from an acetone solution. The 

curing cycle was 175 C for 45 minutes. These results were obtained on a 

sample of bis(epoxyhexy1)carborane that had been vacuum distil led before use. 

This bond strength represented an improvement over very early studies using 

undistilled epoxy. It i s  also better by about ten percent over average values 

obtained on other specimens reported below. This increase i n  bond strength 

using the same distilled epoxy i s  probably due to the fact that, i n  this lay-up 

technique, a maximum amount of the epoxy i s  retained i n  the bond area. 

The resin con- 

0 

0 

Lower bond strength values were obtained when the glass cloth f i l ler was 

not impregnated with the resin-catalyst system prior to  specimen assembly. 

With curing and "B-staging" conditions similar to those reported above, the 

average bond-strengths of seven specimens obtained in the series HEC-63 

to  69 was 2219 p.s.i. with a range of  1710 to 2590 p.s.i. This range of 

values reflects the diff iculty that i s  encountered i n  assembling identical 

specimens. 

* HEC-74 inthe notebook identification of lap-shear specimen: sample h' -74 using 

bis(epoxyhexy1)carborane (HEC). 

12 
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Since a suitable apparatus was not yet available to conduct lap-shear tests 

at elevated temperatures, the effect of  post-cure on bond strengths was 

investigated f i rst .  Four specimens were assembled simultaneously (cure 

cycle of  175 C for one hour) from a mixture containing 3 phr catalyst 

that had been "B-staged" at 100°C for two hours. Two specimens were 

tested immediately and gave bond strengths of 2410 p.s.i. (HEC-70) and 

2060 p.s.i. (HEC-71). The remaining two specimens were post-cured at 

250 C for one hour and gave room temperature bond strengths of 1470 p.s.i. 

(HEC-72) and 1727 p.s.i. (HEC-73). This represents an average decrease 

of about 25 percent i n  bond strength. 

0 

0 

Curing at 150'C did not give values significantly different from those at 

175 C. An average value of 2287 p.s.i. was obtained on two specimens 

(2074 p.s.i. - HEC59 and 2500 p.s.i. HEC-60). Two additional specimens 

were post-cured at 250 C for one hour and gave values of 2070 p.s.i. 

(HEC-61) and 1760 p.s.i. (HEC-62) (average of 1925 p.s.i.). 

0 

0 

0 
The above results of post-curing at 250 C for one hour, although limited, 

show that a decrease of 15 to  25 percent occurs i n  room temperature lap- 

shear strengths. O n  al l  the specimens that were post-cured, the epoxy in 

the glue l ine retained i t s  water-white color, but the portion outside the 

joint had turned Iight-brown. 

The best bond strength value obtained i n  the bis(epoxybuty1)system was 

1840 p.s.i. (BEC-39). The resin contained ten percent catalyst and was 

not "B-staged" before application. In this series (BEC 36-39), values ranged 

from 1000 p.s.i. to  1840 p.s.i. for an average of 1440 p.s.i. Another set 

of seven specimens was assembled using three percent catalyst and a one 

hour "B-stage" period at 100 C. Three specimens, BEC-40, 41, and 42, 0 

13 
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were tested without post-cure and gave bond strengths of  1280 p.s.i., 

1490 p.s.i., and 1700 p.s.i. (average value of 1490 p.s.i.). 

specimens were post-cured at 190°C for one hour (1400 and 1280 p.s.i .) 

and two specimens for two hours at 19OoC (1210 and 1290 p.s.i.). This 

limited series of results suggests that this system retains most of i t s  bond- 

strength under these post-cure conditions. No significant improvement was 

noted when vacuum distil led bis(epoxybuty1)carborane was used for lap- 

shear testing . 

Two 

A comparison of the bis(epoxybuty1) system with the bis(epoxyhexy1) system 

shows that consistently higher bonding strengths are obtained i n  the latter 

epoxy. It i s  impossible, at this stage of the work, to decide i f  this i s  a 

real phenomenon or reflects the proportionately greater effort on the improve- 

ment i n  lay-up procedures devoted to the epoxyhexyl system. It might be 

argued that the epoxyhexyl system should give higher bond-strength values 

in lap-shear tests because the additional two CH groups in  the polyether 

chain (as compared to the epoxybutyl system) remove the ether linkages 

.further from the large carborane moiety. 

2 

U I lowever, this cd~vmtage of Increased strength must be balanced by a 

possible increase in thermal stability (proceeding from the hexyl to the 

butyl derivatives). The electron-deficient carborane polyhedron exerts a 

stabilizing influence (to thermal degradation) on adjacent chemical 

groupings. The closer the carborane nucleus i s  to these groupings, the 

greater should be the overall thermal stability of the species. On this 

basis, bis(epoxybuty1)carborane should be the most thermally stable of the 

two species. Since adhesive failure at elevated temperatures i s  due, i n  

part, to the thermal degradation of the structure, the epoxybutyl system 

should give the adhesive having the best performance at elevated tempera- 

ture. A complete analysis of  bond strength values i n  both systems at 

elevated temperatures w i l l  have to  be made to  test the hypothesis. 

14 
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1 1 1 .  EXPERIMENT A L 

A. SYNTHESIS OF CARBORANE INTERMEDIATES 

1. 6,9-Bis(acetonitriIo)decaborane (BAND) 

In a typical preparation, 300 g of crude decaborane was added with 

stirring to  1500 ml  of chromatoquality acetonitrile. The resulting 

suspension was filtered, and the residue was discarded. The decaborane- 

acetonitrile solution was transferred to  a three l iter flask equipped with a 

mechanical stirrer, thermometer and reflux condensor. The flask was 

heated at 80 - 84 OC for 4 1/2 hours, during which time a yellow solid 

formed. The mixture was cooled and the solid product was collected on 

a Bijchner funnel using No. 42 filter paper. The product was washed with 

several 100 ml portions of fresh acetonitrile and air-dried. A light-yellow 

product (BAND) was obtained. The filtrate, containing unreacted 

decaborane and BAND was used i n  place of fresh acetonitrile for a subse- 

quent run. This reuse of filtrate i s  reflected i n  the percent conversion of 

decaborane to BAND. 

2. 1,2-Bis(acetoxymethyl)carborane (BAMC) 

In a typical preparation, a mixture of 175 g BAND (.870 moles),,151 go f  1,4- 

bis(acetoxy)butyne -2 (.887 moles) and one liter of benzene was heated in 

a three l i ter flask equipped with a mechanical stirrer, thermometer and 

reflux condensor. The mixture was refluxed at 82 -85OC for 20 t o  24 hours. 

The resulting suspension was cooled and Bkhner - filtered using Number 42 

fi l ter paper. Benzene-insoluble "B-solids" retained on the filter paperwere 

destroyed by reaction with methanol. The benzene solvent was removed from 

the brown filtrate on a vacuum rotary evaporator at 40 - 45OC. The dark 

brown semi-solid remaining in the flask was agitated with one liter of pentane. 

17 
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The suspension was allowed t o  settle, and the supernatant l iquid was 

gravity-filtered to give a light yellow solution. The solution was cooled 

to -8OoC, and h e  resulting solid (crude BAMC) wus suction filtered. The 

residual brown solids were treated wi th  fresh 500 ml  portions of pentane 

unti l no appreciable amount of solid appeared when the filtered liquid was 

cooled to  -80 C. The brown pentane-insoluble "B-solids" were destroyed 
0 

by reaction with methanol. The combined off-white product was usually a 

semi-solid at room temperature. (The reported melting point of BAMC i s  
42 - 43OC (6) ). Possible impurities are "B-solids" and unreacted butyne. 

BAND i s  relatively insoluble i n  pentane. After standing for several days, 

a small portion of the crude solid would not redissolve in fresh pentane. 

The purest product was obtained by adding enough fresh pentane t o  the 

crude material to dissolve a l l  but the most insoluble material, filtering, 

cooling to -80 C, filtering, washing the precipitate with cold fresh pentane 

and suction drying. The product obtained was 

42 OC. 

0 

white and melted at 38 - 

3. 1,2-Bis(hydroxymethyI)carborane (BHMC) 

Gaseous hydrogen chloride was passed into a solution of 550 g. of  BHMC 

I n  3.0 Iiters cf methcnc!. The sc?lufion wns refluxed for four hours with a 

continuous stream of hydrogen chloride bubbling through the solution. 

During this time, the solution turned light brown i n  color. About two- 

thirds of the methanol-methylacetate mixture was boiled away, and dis- 

t i l led water was added to the hot solution unti l a cloud formed. The 

solution was cooled to room temperature to  precipitate the crude BHMC 

which was collected, washed with water and air-dried. Recrystallization 

from water gave 162 g. of white product (for an overall conversion of 

BAMC t o  product of 42 percent). 

18 
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4. Carborane 

In a typical preparation, a suspension of  40.6 go (0.200 moles) of 1,2- 

bis(hydroxymethy1)carborane i n  400 m l  of  20 percent aqueous potassium 

hydroxide was stirred at 2OoC. Potassium permanganate (96.4 g. - 
0.610 moles) was slowly added over a 3 - 3.5 hour period. An init ial  

deep green color (MnO 2-) was observed which gave way to  a brown sus- 

pension (Mn02 and carborane). The suspension was stirred for an additional 

hour, cooled to  0 C, and acidified with excess concentrated hydrochloric 

acid. Several ml of ethyl ether were added to  break the resulting foam. 

In order to  convert MnO to Mn 

(0.61 mole) i n  300 ml of water was slowly added to the acidified mixture. 

The resulting white suspension was filtered, and the solid was washed with 

water and vacuum dried at room temperature. Recrystallization from a 1 - 
butanol-heptane mixture gave 16.4 g. of product (representing a 57.Oper- 

cent conversion of BHMC to carborane). The infrared spectrum of the product 

was identical to  that of carborane, 

4 

0 

2+ , a solution of 63.5 g. of NaHS03 2 

5. l12-Bis(3-butenyl)carborane 

A slight excess of 1 ;6 M butyllithium solution (135 ml  or 0.216 moles of 

BuLi) was transferred to a dropping funnel i n  a nitrogen-filled glove bag. 

The solution was added over a 15 minute period, with stirring, to  11.5 g. 

(0.0800moIes) of carborane dissolved i n  75 ml  of anhydrous ethyl ether con- 

tained in a round bottom reaction flask. During the addition, a nitrogen flow 

was maintained over the system, and the flask was cooled with an ice-water 

bath. After the addition was complete, the suspension of heavy white solid 

was stirred at room temperature for about one hour. The suspension was 

allowed to settle, and the bulk of the supernatant liquid was removed with 

a syringe. About 75 ml  of anhydrous ethyl ether was added to the system 

19 
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with stirring to  wash the solid. The bulk of the solution was removed, and 

the procedure was repeated. About 100 ml of anhydrous ethyl ether was 

added, and the system was heated to reflux. A weighed quantity of 4- bromo- 

1-butene (27.0 g. - 0.200moles) was added to  the system over a 10 minute 

period. After a two hour reflux period, the white solid had completely 

disappeared leaving a light brown solution. The reaction mixture was poured 

into 200 ml  of water and thoroughly mixed. The ether layer was separated 

and dried with magnesium sulphate. The crude product, obtained from the 

removal of ether solvent on a rotary evaporator, was fractionally crystallized 

from methanol-water. The final solution was evaporated on a rotary evaporator 

at room temperature and gave a brown oil. 

Fraction - H 2 0  added (ml) Product (g . ) 
11-1 3 0.6 

11-2 5 5.2 

11-3 20 3.3 

11-4 20 0.4 

11-5 Rinco off solvent o i l  brown 

M.P. O C  

71 -73 

70 -72 

69-71 

58 -64 

An elemental analysis of  fraction 11-2, representing 50 percent of the 

total product, was i n  excellent agreement with the theoretical values. 

Calcd. for B10C10H24: 

Found: 

6, 42.8; C, 47.7; H, 9.5 

6, 42.4; C, 48.2; H, 9.5 

The infrared spectrum of the product i s  shown i n  Figure 1. Characteristic 

peaks are as follows: 3085cm 
-1 (C-H stretch of the methylene of the 

20 
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Attempts to  remove a l iquid impurity from a "wet"shelf sample of  1-(3- 

buteny1)carborane by vacuum sublimation and by recrystallization from 

cyclohexane and heptane were unsuccessful. Crystallization of a 5.0 gm 

21 

-1 -1 
doublet (B-H stretch), 1640 cm 

(CH2 out-of-plane deformation of the methylene 

-CH = CH2 group), 2580 and 2600 cm 

(C=C stretch), 910 cm 
-1 

of the -CHICH2 group), and 720 cm 

-1 

(carborane cage vibration). 

6 .  1,2-Bis(5-hexenyl)carborane 

The procedure for the preparation of this material i s  the same as that used 

for the preparation of the corresponding butenyl compound, The amounts of 

materials used are as follows: carborane, 14.4 g. (0.100 moles); butyl- 

lithium in 1 b M hexane solution, 150 m l  (0.240 moles); 6-bromo-l-hexene, 

32 g (0.20 moles). Only a small amount of solid, presumably unreacted 

di Iithiocarborane, remained after a ten hour reflux period. The reaction 

mixture was poured into 200 ml of water and thoroughly mixed. The ether 

layer was separated and dried with magnesium sulphate. The cwde product 

(26.8 g. representing a conversion of 87 percent) obtained from the removal 

of ether solvent on a rotary evaporator, was a yellow oil. Vacuum distilla- 

t ion gave a colorless mobile liquid whose infrared spectrum i s  shown i n  

Figure 11. The spectrum was compared to those of carborane and 6-bromo-l- 

hexene. The only significant feature to be expected i n  the spectrum of the 
-1  

product would be the lack of  carborane C-H stretch at 3075 cm . However, 

the bromohexene also absorbs in this region (3080 cm-I). Spectral analysis 

of the product was therefore made by a ratio method. The product appears 

to be of high purity since the ratio of the C-H stretch at 3080 crn-l t o  the 
-1 C=C absorption at 1640 cm i s  identical to  that i n  6-bromo-l-hexene. 

7. Purification of  1 -(3-butenyl)carborane 
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sample from methanol -water followed by vacuum drying at room 

temperature gave 4.1 9.. of a white solid. The melting point of 

42 - 44OC compared favorably with the reported melting point 

for 1 -(3-butenyl)carborane of 45- - 46OC'l). However, on standing 

on the shelf for several months i n  a closed container, the product 

reverted to  a "wet" solid. 

B. SYNTHESIS OF EPOXYALKYLCARBORANE MONOMERS 

1 . Mono(epoxybuty1)carborane 

Trifluoroperacetic acid was prepared i n  the following manner. Twenty ml of 

methylene chloride was added t o  1.1 m l  (0.040 moles) of 90 percent hydro- 

gen peroxide i n  an open beaker cooled by ice water. A total of 5.65 ml  

(0.405 moles ) of trifluoroacetic anhydride was added to  the above solution 

with stirring over a ten minute period. The beaker was covered with a 

watch glass, and stirring was continued for another ten minutes. A mixture 

of 30 ml of methylene chloride, 12.0 g. of sodium carbonate and 5.0 g. 

(0.25 moles) of 1-(3-butenyI)carborane was placed in a 3-necked round 

bottom flask. The flask was equipped with a mechanical stirrer, reflux con- 

densor and a dropping funnel. The solution of trifluoroperacetic acid was 

added dropwise over a 90 minute period. During this time, the temperature 

of the reaction was maintained below reflux by the use of an ice-water bath. 

After the addition was completed, the mixture was refluxed for 30 minutes. 

Following the reflux period, reaction of a drop of the supernatant liquid 

to  starch-iodide paper was negative, indicating the absence of peroxides. 

Gravity f i l tration of the reaction mixture followed by removal of solvent 

from the filtrate on a rotary evaporator gave 4.1 g. of a white solid. The 

melting point of the solid was 60 - 63OC (lit 60 - 62OC ( l ) ) .  The infrared 

spectrum of the product contained peaks characteristic of  the epoxy linkage 

at 840 cm , 855 cm , and 3000 cm . -1 -1 -1 

22 
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2. 

The procedure used for the preparation of  mono(epoxybuty1)carborane was 

followed. In a typical preparation, the amounts of reagents were 4.4 ml 

of 90 percent hydrogen peroxide (0.16 moles) 22.8 ml of trifluoroacetic 

anhydride (0.160 moles) and 13.2 g. of dibutenylcarborane (0.0520 moles). 

A total of 13.0 g. of a white solid (m.p. 68 - 7loC) was isolated. Vacuum 

distillation of the solid yielded a middle fraction whose infrared spectrum 

(Figure 1111) and melting pointwere identical to that of the crude material. 

Absorption bands characteristic of the epoxy linkage were present at 840cm 
-1 -1 855 cm-’, and 1250 cm . A band at  1640 cm characteristic of the C=C 

group was not present. 

Bi s (e poxy b u t y I) ca rbora ne 

-1 , 

In one preparation, the infrared spectrum of the product contained a band 

at 1640 cm characteristic of dibutenylcarborane. An additional treatment 

with trifluoroperacetic acid removed this band. 

-1 

3. 

The procedure used for the preparation of  mono(epoxybuty1)carborane was 

followed. In a typical preparation, the amounts of reagents were 4.4 ml of 

90 percent hydrogen peroxide (0.16 moles), 22.8 ml. of trifluoroacetic 

anhydride (0.160 moles) and 13.6 g. of dihexenylcarborane (0.0432 moles). 

A total of 13.6 g. of a cloudy yellow liquid was isolated. Vacuum 

distil lation gave a water-white viscous l iquid whose infrared spectrum 

(Figure IV) was essentially identical to  that of the crude product. As 
-1 

compared to  the spectrum of dihexenylcarborane, the band at 1640 cm 

characteristic of the C=C group had vanished. Bands characteristic of 

the epoxy linkage appeared at 830 cm , 845 cm , and 1250 cm . 

Bi s (e poxy hexy I )ca rbora ne 

-1 -1 -1 
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C. CURING AND POLYMERIZATION STUDIES 

1 . Mono(epoxybuty1)carborane 

The catalyst used for the preliminary investigation was DMP-30; t r i s -  

(dimethylaminomethyl)phenol . One gram samples of the epoxy were 

heated i n  test tubes i n  a water bath held at 85 - 9OoC. With 20 drops 

of catalyst, the epoxy turned to a non-flowing viscous liquid i n  30 

minutes. With 5 drops of  catalyst, the same consistency was obtained 

within a one hour period. 

The thermal stability of the uncatalyzed epoxy was then investigated. 

Also, the stability of the carborane cage was tested in the presence of 

DMP-30. One gram quantities of  the following compounds were heated 

in closed test tubes to prevent contact of the enclosed materials with 

water vapor. 

a. epoxybutylcarborane + 5 drops DMP-30 

b. epoxybutyl carborane 

c. monobutenylcarborane + 5 drops catalyst 

The samples were heated for one hour i n  a water bath held at 85 - 9OoC. 

As expected, system #1 set to  a non-flowing viscous liquid. Systems #2 

and 3 (monobutenylcarborane melts at 42 - 44OC) remained free-flowing 

liquids. On cooling, a l l  three systems solidified, #1 and #2 to  britt le 

solids and #3 to  a "wet" solid. There was no visual or infrared evidence 

of reaction or degradation in either system. 

To continue the work initiated with the DMP-30 catalyst, one gram 

samples of mono(epoxybuty1)carborane were heated i n  corked test tubes 
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0 
for one hour at 175 C with the following catalysts. 

d. DMP-30 - one drop 

e. N, N-dimethylbenzylamine - one drop 

f. boron trifluoride-monoethylamine 0.1 gm 

In each case, only a slight increase i n  solution viscosity was noted at 

175 C but viscous plastics having string-forming characteristics formed 

when the samples were cooled to room temperature. Infrared spectra 
-1 

on a l l  three samples showed broad absorption i n  the 1060- 1150 cm 

region. This i s  characteristic of the ether linkage i n  cured epoxies. 

The infrared spectra also showed the expected decrease in the epoxy 

absorption at 855 cm 

0 

-1 
relative to the carborane cage absorption at 

-1 728 cm . 

A one gram sample of the carborane epoxy with the boron trifluoride- 

ethylamine catalyst was heated at 85 - 9OoC for one hour. Little, i f  

any, polymerization had taken place under these conditions. This i s  

not unexpected since the literature specifies that curing takes place in 
this catalytic system only at temperatures greater than 90 0 C (9) . 

2. Bi s(e poxybut yl )carbora ne 

Exploratory curing studies on bis(epoxybuty1)carborane were conducted 

i n  a manner similar t o  those described i n  the mono(epoxybuty1)carborane 

system. With the BF3:EtNH2 catalyst (10 phr) a solid formed almost 

immediately at 18OoC %-om the init ial melt. The solid was hard at room 

temperature and not easily fractured by impact with a sharp instrument. 

However, i t  did not appear homogeneous, probably the result of too 

rapid a cure. 
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With N, N-dimethylbenzylamine as catalyst, the bis(epoxybuty1)carborane 

system remained a free flowing liquid at 180 C. A solid, that was brittle 

and easily fractured, formed when the sample cooled to room temperature. 

0 

DMP-30 catalyst cured the diepoxy system to a spongy mass which turned 

to  a britt le solid when cooled to  room temperature. 

Since our ini t ial  studies above had indicated that the BF :EtNH system 

appeared to be the most promising, an investigation was made of curing at 

lower temperatures. After curing a mixture of 1 .O g. epoxy and 0.1 g. 

catalyst for 1/2 hour at 80 - 90 C, very l i t t le change in solution viscosity 

at temperature was noted. An additional two hours of heating gave a 

viscous l iquid at 90 C, and a viscous plastic formed when the sample was 

cooled to room temperature. An additional treatment at 12OoC for three 

hours gave a soft solid at this temperature, but a hard solid, not easily 

fractured, formed on cooling to room temperature. 

3 2 

0 

0 

An identical sample was then heated at 150°C. After 15 minutes, a non- 

flowing viscous l iquid had formed at this temperature. After one hour, the 

sample was a hard soiid, at 150°C which, at room temperature, was nor 

easily fractured. This encouraging result suggested that lap-shear 

specimens be assembled in this system. 

One gram mixtures(equa1 weight amounts of mono and bisepoxybutyl- 

carborane) were heated with 0.1 g. quantities of DMP-30, N, N-dimethyl- 

benzylamine, and BF ;EtNH at 18OoC for one hour. Under these conditions, 3 2 
curing resulted in room temperature britt le solids. 
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A mixture containing 0.5 9. amounts of mono(epoxybutyl)carborane, 

bi s (e poxybu t y I )  ca rbora ne and b i s (h ydroxyme t h y I )ca rbora ne was heated 

with 0.15 g. of DMP-30 for one hour at 18OoC. A room temperature 

brittle solid was obtained. The same result was observed when N,N- 

dimethylbenzylamine catalyst was used. 

3. Bis(epoxyhexy1 )carbora ne 

Several mixtures of crude epoxy and B EtNH were placed i n  corked 

test tubes and heated for one hour. The solid catalyst did not appear to  

be miscible with the epoxy at room temperature. Results of several 

experiments are described below. 

5 2  

Percent Cata I yst Curing Temperature OC Observation 

10 1 50 Hard solid 

20 150 Hard solid 

10 100 Viscous liquid 

20 100 Very viscous liquid 

These results show that the epoxyhexyl derivative cures in a manner similar 

to the epoxybuiyi derivative. The same resuits were obtained when the 

catalyst concentration was decreased to 3 phr. 

D. ADHESIVE BOND PROPERTY EVALUATION 

1 .  Preparation of Lap-Shear Specimens and Testing Procedures 

Type 17/7 stainless steel strips were machined according t o  Mil Spec 

MIL-A-00509E. The final strip dimensions were 5.094 i n  x 1 .OOO i n  

x 0.050 in. 

strips overlapped by 0.5 in. 

Each lap-shear specimen consisted of two of the above 
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The following clean-etch procedure was followed on al l  specimens. 

After step 1, white gloves were used to  handle the specimens. 

a. 

b. 

C .  

d. 

e. 

f. 

g -  

h. 

Degrease by thoroughly wiping with methylethyl 

ketone. 

Etch for 10 minutes at room temperature in the 

following solution. 

Ni t r ic  Acid (70%) 10% by volume 

HF Acid (50%) 2% by volume 

88%by volume H2° 
Rinse i n  tap water 

Passivate for 10 minutes at 71 C in the following solution 

which had been aged with aluminum metal. 

Sodium dichromate 28.5 g. 

Sulphuric acid 285.0 g. 

Tap water 

0 

To make one liter. 

Rinse with tap water. 

Rinse with distilled water 

Observe the panels to make sure they hold a continuous 

f i lm  of water on the areas to be bonded. 

Dry for 30 minutes i n  an air oven at 71 C. 0 

Several different methods were utilized for specimen assembly. The 

most successful involved the use of a special i i g  with guides for the 

alignment of the steel strips. Seven specimens could be assembled 

simultaneously on this i ig. Strip supports were used under the top 

strips for leveling purposes. The overlap area was covered by a strip 

of silicone rubber and a strip of  aluminum metal. The stainless steel 
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specimens were taped to  the alignment jig, and a piece of heavy glass 

cloth was placed over the complete assembly. The apparatus was placed 

i n  a specially designed vacuum bag constructed of Tedlar f i lm and Pres- 

t i te 587. A near vacuum (about 15 p.s.i. differential) was maintained 

on the system during cure with the weight on the overlap joint distributed 

by the pressure of the glass cloth. In a l l  work involving the vacuum bag, 

Volan A-181 glass cloth, washed w i th  MEK, was placed i n  the joint to 

aid in holding the resin i n  place. 

Other specimens were assembled, without the use of an alignment jig, 

i n  a Carver press at elevated pressure. Some assemblies were also made 

under self supporting pressure. However, i n  most cases, the best-looking 

samples were obtained using the alignment i i g  and the specially designed 

vacuum bag. 

Glue l ine thickness was diff icult t o  determine on the assembled specimens. 

Excess epoxy leaked out of the joint area and cured on the outside of the 

strips. The presence of this solid prevented any direct measurement of 

the glue line. The values reported were determined microscopically. 

They are higher than the true values because rounded edges were formed 

from the f i l ing procedure described below. It i s  felt that a glue l ine 

thickness of about 6 mi ls was obtained on the best specimens. 

All specimens were tested i n  an lnstron tensile machine at a constant 

strain rate of 0.01 in/in/min. This strain rate gave a test time which 

ranged between 1.9 mins. and 2.4 mins. The specimens were filed to 

remove epoxy from the outside of the joint on the sides. After testing, 

the overlap areas were examined t o  determine the mode of  failure, 

adhesive or cohesive. 
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2. Assembly of Lap-Shear Specimens Using Bis(epoxyhexy1)carborane 

and BF3:EtNH2CataIyst 

Series a.) 

The mixture contained 10 percent by weight of catalyst 

and had been "B-staged" at  100°C for one hour. The 

sample was warmed and stirred to give a mobile liquid. 

This warm liquid was applied to strips which were assembled 

into two specimens. The specimens were cured at 150 C 

under self-supporting pressure for 2 1/2 hours using the 

alignment i ig. 

Specimen Number Bond Strength Thickness Type of Failure 

HEC #25 2030 p.s.i. N.M.* adhesive 

HEC #26 1808 p.s.i. N.M." adhesive 

0 

GI ue Line 

* Not  Measured 

Series b.) 

The mixture contained three percent by weight of catalyst 

and had been "B-staged" at  100°C for one hour. The speci- 

mens were cured at 175°C for one hour i n  the vacuum bag 

(about 15 p.s.i.) on the alignment i i g  with glass cloth f i l ler.  

Specimen Number 48 was given a !one hour post-cure at 190 C . 
Glue Line 

Specimen Number Bond Strength Thickness 

0 

Type of Failure 

HEC #47 2320 p.s.i. .Cl l - .O12in.  cohesive 

HEC #48 1530 p.s.i. ,011 -.O12 in. cohesive 
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Series c.) 

The mixture contained three percent by weight of catalyst and 

had been "B-staged" at 100°C for two hours. The specimens 

were cured at 175OC for one hour i n  the vacuum bag (about 

15 p.s.i.) using the alignment i i g  and glass cloth fi l ler. 

These specimen.s were cured i n  the same assembly as Specimens 

Numbered BEC 53, 54, 55 in the butyl system. 

Glue Line 
Specimen Number Bond Strength Thickness Type of Failure 

HEC #49 2230 p.s.i. N.M.* cohesive 

HEC #50 2180 p.s.i. N.M.* cohesive 

HEC #51 2125 p.s.i. .022 in. cohesive 

HEC #52 2160 p.s.i. .024 in. cohesive 

* Not Measured 

Series d.) 

The mixture was from the batch used for the specimen prepared 
0 

above. Specimens were cured at  150 C for one hour, i n  the 

vacuum bag (15 p.s.i.) using the alignment i i g  and glass cloth 

fi!!et-. Specliiien Numbers 51 and 02 were given an additional 

post-cure at 250 C for one hour. 
0 

Glue Line 
Specimen Number Bond Strength Thickness Type of Failure 

HEC #59 2074 p.s.i. .010 in. cohesive 

HEC #60 2500 p.s.i. .012 in. cohesive 

HEC #61 2070 p.s.i. .013 in. cohesive 

HEC #62 1780 p.s.1. .013 in. cohesive 
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As a result of the 25OoC post-cure, the resin spill-over on 

Specimen HEC #61 and #62 was tan i n  color but the cured 

resi n i n the io i  nt remained color1 ess . 

Series e.) 

The mixture was from the batch used for the specimens pre- 

pared above. Specimens were cured at 175 C for one hour 

i n  the vacuum bag (15 p.s.i.) using the alignment i i g  and 

glass cloth filler. 

0 

u Line 
Specimen Number Bond Strength %!,&ness Type of Failure 

HEC #63 2150 p.s.i. .004 in. cohesive 

HEC #64 2540 p.s.i. .006 in. cohesive 

HEC #65 1710 p.s.i. .015 in. cohesive 

HEC #66 2177 p.s. 

HEC #67 2277 p.s. 

HEC #68 2590 p.s. 

HEC #69 2090 p.s. 

.013 in. cohesive 

.008 in. cohesive 

.009 in. cohesive 

.014 in. cohesive 

The mixture was from the batch used for the specimens prepared 

above. Specimens were cured at 175 C for one hour in the 

vacuum bag (15 p.s.i.) using the alignment i ig. Specimen 

Numbers #72 and #73 were given an additional post-cure at 

250°C for one hour. 

0 
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Glue Line 
Specimen Number Bond Strength Thickness Type of Failure 

HEC #71 2410 p.s.i. .005 in. cohesive 

HEC #71 2060 p.s.i. .007 in. cohesive 

HEC #72 1740 p.s.i. .009 in. cohesive 

HEC #73 1737 p.s.i. .009 in. cohesive 

Series n.1 
The mixture was the residue from the batch used for the specimens 

reported above. However, a special treatment was used to apply 

the epoxy. The "B-staging" was continued at 125 C for seven 

minutes to give a very viscous l iquid at this temperature. The 

material was a gummy mass at 25 C. It was dissolved in acetone 

and the resulting solution was transferred to a small beaker. The 

solution was concentrated. by evaporation for ease of impregna- 

tion of the glass cloth. Squares of glass cloth were soaked i n  the 

solution and air dried to remove solvent. The solution was con- 

centrated further, and the viscous solution was applied to  the 

metal strips. Residual solvent was removed by gentle warming 

with a n  a i r  sun. Two specimens were assembled using the 

alignment i i g  and the vacuum 

for 45 minutes. One specimen was tested immediately (HEC #74). 

The second specimen (HEC #75) was post-cured at 175 C for an 

additional half hour. 

0 

0 

0 
bag. The cure cycle was 175 C 

0 

Glue Line 
Specimen Number Bond Strength Thickness Type of Failure 

HEC #74 2810 p.s.i. N.M.* cohesive 

HEC #75 2740 p.s.i. N.M.* cohesive 

* N.M. - Not Measured 
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3. Assembly of  Lap-Shear Specimens Using Bis(epoxybuty1)carborane 

and BF3: EtNH Catalyst 2 -- 
Series a.) 

A mixture of 2.0 gram of epoxy and 0.19 gram of BF :EtNH2 

catalyst was warmed to 90 C to  give a homogeneous milky 

liquid. When this l iquid was applied to  the stainless steel 

strips, i t  solidified almost immediately. Five specimens 

were assembled without glass cloth binder and placed in an 

air  oven at 150°C for 2 1/2 hours. N o  external pressure was 

applied during this treatment. 

3 
0 

Glue Line 
Speciment Number Bond Strength Thickness Type of Failure 

BEC #6 1229 p.s.i. 0.017 in. mainly adhesive 

BEC #7 1250 p.s.i. 0.017 in. entirely adhesive 

BEC #8 1192 p.s.i. 0.021 in. mainly adhesive 

BEC #15 1330 p.s.i. N. M. * cohesive and 

* N.M. - Not Measured 

adhesive 

Series b.1 

Special vacuum treatments were applied to observe the effect of  

outgassing on lap-shear strength. A mixture containing the bis- 

epoxy and BF :EtNH (10 percent by weight) was melted and 

applied to the strips. Three specimens (BEC 17,18, and 20) 

were assembled and heated at 12OoC for 16 hours in vacuo. 

Two other coated strips were vacuum treated at 70 C for 30 

minutes. One specimen (BEC 24) was assembled and heated at 

15OOC i n  air for 2 1/2 hours. 

3 2 

0 
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Glue Line 
Specimen Number Bond Strength Thickness Type of Failure 

BEC #17 1240 p.s.i. N. M. * adhesive 

BEC #18 1670 p.s.i. N.M. * adhesive 

BEC #20 1621 p.s.i. N. M. * adhesive 

BEC #24 1324 p.s.i. N.M. * adhesive 

* N.M. - Not Measured 

The specimens listed above were poorly aligned. No evaluation 

could therefore be given t o  the vacuum techniques used for 

sample preparation. 

Series c.) 

The mixture contained ten percent by weight catalyst and was 

not "B-staged" before application. The specimens were cured 

at 175OC for one hour i n  the vacuum bag (about 15 p.s.i.) i n  

the alignment i i g  with glass cloth f i l ler .  

Glue Line 
Specimen Number Bond Strength Thickness Type of Failure 

BEC #36 1580 p.s.i. N.M.* cohesive 
- cohesive BEC #37 IUUU p.s.i. N.M.* 

BEC #38 1340 p.s.i. N.M." cohesive 

BEC #39 1840 p.s.i. N.M.* cohesive 

* N . M. - Not Measured 

Series d. 1 

The mixture contained three percent by weight of catalyst and 

was "B-staged" at 100 C for one hour. Specimens were cured 

at 170°C for two hours using the procedure described above. 

0 
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Specimens BEC #43 and #44 were post-curedl at 190'C for 

one hour whereas BEC #45 and #46 were post-cured for 

two hours at 1 90°C. 

Glue Line 
Specimen Number Bond Strength Thickness 

BEC #40 1280 p.s.i. .006 in. 

BEC #41 1490 p.s.i. .006 in. 

BEC #42 1700 p.s.i. .006 in. 

BEC #43 1400 p.s.i. N.M.* 

BEC #44 1280 p.s.i. N.M.* 

BEC #45 1210 p.s.i. N.M.* 

BEC #46 1290 p.s.i. N.M. 

* N.M. - Not Measured 

Series e.) 

Type of Fai I ure 

cohesive 

cohesive 

cohesive 

cohesive 

cohesive 

cohesive 

c oh es i ve 

A vacuum distilled sample of epoxy was "&taged"with three 

percent catalyst at 100 C for one hour. The specimens were 

assembled as described above. 

0 

Glue Line 
Specimen Number Bond Strength Thickness Type of  Failure 

BEC #53 1280 p.s.i. .009 in. cohesive 

BEC #54 1640 p.s.i. .015 in. cohesive 

BEC #55 1350 p.s.i. .007 in. cohesive 

4. Attempted Assembly of Lap-Shear Specimens Using Mono(epoxy- 

buty1)carborane 

DMP-30 catalyst (18 drops) was added to 3.7 g, of l iquid epoxybutyl- 

carborane at about 8OoC. The resulting liquid, which contained some 

bubbles, was applied to  the preheated specimens. The specimens were 
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assembled and placed i n  an air oven at 1 10°C for 20 hours. The only 

pressure at the joints was that of the top specimen itself. Little or no 

cohesion was observed after the samples had cooled to  room temperature. 

The solid that did adhere to the steel surface was britt le and easily re- 

moved by scratching. The remainder of the resin, after having stood for 

several days at room temperature, was reheated to  about 80 C. The 

sticky solid was applied to  specimens along with Volan A-181 glass cloth 

to aid i n  holding the resin i n  place. The specimens were assembled i n  a 

Carver Press and treated at 175OC and 100 p.s.i. for one hour. Again, 

no cohesion was observed and the assemblies easily separated. However, 

the cured epoxy did appear to "wet" the metal surface. 

0 
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IV. FUTURE WORK 

Bond strength values obtained on lap-shear tests i n  the present program show that 

both bis(epoxybuty1)carborane and bis(epoxyhexyl)carborane, cured with boron 

trifluoride-ethylamine catalyst, exhibit good adhesive properties. Fol low-on work 

i s  required i n  several areas in order t o  satisfy the ultimate goal of  determiningadhesive 

capabilityofths epoxyalkylcarborane systemsoat elevated temperatures. First of all, 

bond strengths attemperature must be obtained. 

The program on evaluation of various curing agents should be continued using several 

difkrent amine-type catalysts. Combinations of the several monomers might be form- 

ulated i n  order to develop staged compositions possessing optimum physical properties 

for adhesive applications. Curing conditions for the use of boron trifluoride-mono- 

ethylamine catalyst might well be optimized. 

Polymers which are to  be applied to steel substrates should be viscous liquids. Studies 

should be continued t o  determine the optimum amount of  "B-staging" for substrate 

application. 

determine the pot-life of the monomers i n  the presence of the catalyst. 

In conjunction with this work, a program should be conducted to  

Based on an analysis of the data generated i n  the testing program, modifications of 

the formulation of the adhesive can be made i n  regards to: 

1. Additives 

2. Plasticizers 

3. Curing Cycle 

It i s  suggested that dipentenylcarborane w i l l  give an epoxy which, when cured, 

should have properties intermediate between the epoxybutyl and the epoxyhexyl 

derivatives. 
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The synthesis of two neocarborane (m ) epoxide monomers, bis(epoxybuty1)-m- 

carborane and bis(epoxyhexy1)-m-carborane i s  recommended. In the meta system 

the carbon atoms are non-adiacent whereas they are adjacent i n  the ortho isomer. 

An additional step, the isomerization reaction, i s  required for their synthesis. 

It i s  expected that the m-carborane polymers wi II display better physical and perhaps 

better thermal properties than their ortho carborane analogs. Also, the following 

diepoxy compound could be prepared from the reaction of epichlorohydrin with bis- 

(hydroxymethy1)carborane. 

CH20CH2CH-€H2 
b’ 

This compound, when cured, might give a greater bond strength than the corresponding 

bis(epoxyalky1)carborane system because of the additional polar ether linkages present 

i n  the backbone. 

Alternative routes for the conversion of alkenylcarboranes to  epoxycarboranes should 

be sought in order to  develop a method of synthesis which i s  more readily adaptable 

to  large scale manufacturing. This should include, but not be limited to, a study of 

other peracid reagents and the hypochlorous acid route outlined below. 

H -(CH2) -CH -CH + Base -> H 
1 2  

k H l o  !3H CI 
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